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Abstract. The analytic solution to the wave equation for small-signal sum-frequency process is derived in
2D χ(2) photonic crystals with use of the Green function method. It is predicted that the sum-frequency
electrical field at quasi-phase matching (QPM) resonance is proportional to the angle-dependent effective
crystal length. This implies that multiple wavelength QPM frequency conversion with controllable intensity
output can be realized in a single 2D χ(2) photonic crystal. It is revealed that efficient frequency conversion
requires both the QPM and the proper structure matching. A novel double-circle construction, different
from the conventional Ewald construction, is presented to reflect important QPM processes. It is also shown
that the QPM resonance tuning of second-harmonic generation can operate over the whole transparent
wavelength range of crystals.

PACS. 42.70.Qs Photonic bandgap materials – 42.65.Ky Harmonic generation, frequency conversion –
42.65.-k Nonlinear optics – 42.70.Mp Nonlinear optical crystal

Optical parametric processes are of importance for cre-
ating coherent sources at new frequencies where the con-
ventional lasers perform poorly or are unavailable [1–6].
As is well-known, optical dispersion of crystals gives
rise to different phase-velocities between interacting light
waves with different frequencies. Then, efficient frequency
conversion requires phase compensation for optical dis-
persion of crystals. Two schemes have been developed
for this purpose. One is the critical phase-matching in
the naturally or artificially anisotropic birefringent crys-
tals [7–10]. But this is impossible for isotropic optical ma-
terials. Another is the quasi-phase-matching (QPM) in
one-dimensional (1D) modulated nonlinear susceptibility
structures [11–18]. However, the 1D structures severely
limit the utilization of a single sample for frequency con-
version. For example, it is very difficult for a single 1D
QPM crystal to realize the multiple wavelength QPM fre-
quency conversion with controllable intensity output and
the QPM resonance tuning over the whole transparent
wavelength region of the crystal.

Recently, 2D χ(2) photonic crystals were proposed by
Berger [19], in which nonlinear susceptibility χ(2) varies
periodically in the 2D plane, and the linear susceptibil-
ity χ(1) is frequency-dependent, but position-independent.
Last year, the first experimental sample is reported [20].

a e-mail: guby@aphy.iphy.ac.cn

As compared to 1D case, new QPM processes with poten-
tial applications appear in the 2D plane, such as collinear
QPM in multiple directions, multiple wavelength fre-
quency conversion, multiple-beam second-harmonic gen-
eration (SHG) simultaneously in different directions, and
ring cavity SHG. However, to our best knowledge, how
to calculate the conversion efficiency in the 2D χ(2) pho-
tonic crystals remains an open subject. In this paper, we
present an analytic solution to wave equations for small-
signal sum-frequency conversion in the 2D χ(2) photonic
crystals, and a novel double-circle construction different
from the conventional Ewald construction for revealing
new and important physical processes.

We now consider a 2D χ(2) periodic array with enough
large size poled in an infinite medium. This implies that
a 2D χ(2) crystal is embedded in an index matching
background medium. Such a structure can be realized in
LiNbO3 or GaAs materials for extraordinary EM wave, as
proposed by Berger [19]. Two elementary lattice vectors
in 2D χ(2) crystal are set to a = (a, 0) and b = (bx, by),
then the two primary reciprocal-lattice vectors are G1 =
2π
a (1,− bxby ) and G2 = 2π

a (0, aby ). The numbers of unit cells
along the a and b directions are denoted by Na and Nb,
respectively.

Without losing generality, we prefer to focus on the
sum-frequency processes in the 2D χ(2) crystals. In the
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small signal approach, power depletion of two pump light
waves with frequencies of ω1 and ω2 and wave vectors of
k1 (k1 = n(ω1)ω1/c) and k2 (k2 = n(ω2)ω2/c) may be
neglected, i.e., the magnitude of the two pump fields may
be approximately considered as constants E10 and E20.
Then, the nonlinear wave equation of the sum-frequency
field is reduced as

∇2E3(r) + k2
3E3(r) = −k2

30E10E20χ
(2)(r)eik·r, (1)

where r ≡ (x, y), k30 = ω3/c, k3 = k30n(ω3), and ω3 =
ω1 + ω2; For convenience sake, hereafter k = k1 + k2 is
referred to as the “incident wave vector” and exp(ik · r)
as the “incident plane wave”.

Using the Green function method [21] and considering
the periodicity of χ(2)(r), E3(r) can then be expressed as

E3(r) =
1

4π2

∫ ∞
−∞

dqU(q)eiq·r, (2)

with

U(q) =
k2

30E10E20Ω

q2 − (k3 + iη)2
χ(2)(q− k)

× F (Na, (q− k) · a)F (Nb, (q− k) · b),

(3)

χ(2)(q− k) =
1
Ω

∫
Ω

χ(2)(r′)e−i(q−k)r′dr′;

F (N,φ) =
1− e−iNφ

1− e−iφ
, (4)

where η is a positive infinitesimal; Ω is the area of a unit
cell, given by Ω = aby = βC2

0 , C0 denotes the lattice
constant, and β = 1,

√
3/2, and 3

√
3/2 for the square,

triangular, and hexagonal lattices, respectively.
In general case, the analytical evaluation of the integral

in equation (2) is impossibly drawn. However, if Na and
Nb are sufficiently large, we can obtain the explicit quasi-
plane wave solution of E3(r) for two extreme cases: (i)
Na � Nb and (ii) Nb � Na. For this purpose, we rewrite
equation (2) as follows

E3(r) =
∫ ∞

0

dq
4π2

q

∫ π

0

dθ [U(q)eiq·r + U(−q)e−iq·r],

(q = q(cos θ, sin θ)). (5)

By inserting the well-known formula in solid physics

lim
N→∞

F (N,φ) = 2π
∑
m

δ(φ− 2mπ), (m = 0,±1, ...)

into equation (5), we obtain the resulting expression
for sum-frequency field E3(r) satisfying the (m,n)-order

QPM condition

E3(r) = i
k30E10E20

2n(ω3)

∑
m,n

χ(2)(Gmn)

× L(a)
eff (m,n)eik3,mn·rδk3m,k3,mn , (for Na � Nb)

(6)

E3(r) = i
k30E10E20

2n(ω3)

∑
m,n

χ(2)(Gmn)

× L(b)
eff (m,n)eik3,mn·rδk3n,k3,mn , (for Nb � Na),

(7)

where k3,mn = k + Gmn. In equations (6) and (7),
L

(a)
eff (m,n) = Nbb sin(θb)/ sin θmn and L

(b)
eff (m,n) =

Naa sin θb/ sin(θb − θmn) are just the (m,n)-order QPM
effective crystal length along the outgoing direction of the
sum-frequency wave for Na � Nb and Nb � Na, respec-
tively, here, θb is the angle between the vector b and x
axis. Note that θmn (or θb−θmn) is the angle between the
outing direction and the vector a (or the angle between
the outing direction and the vector b). Hence, L(a)

eff and
L

(b)
eff are mathematically equivalent.

In general case, only a single order QPM resonance of
k takes place. However, for some specific incident wave
vectors, several different order QPM resonance may ap-
pear simultaneously in different directions on the 2D
plane, in a similar way as the linear diffraction by a
diffraction grating.

The above solutions show that the effective crystal
length is angle-dependent, which becomes longer as the
outgoing direction of the sum-frequency wave approaches
the direction of the elementary lattice vector a (or b). As
compared to the 1D case, this provides a new and pow-
erful route for enhancing conversion efficiency, and also
indicates that the multiple wavelength frequency conver-
sion with controllable intensity can be realized in a single
2D QPM crystal.

Note that the (m,n)-order QPM sum-frequency filed
vanishes if the structural factor χ(2)(Gmn) = 0. The corre-
sponding structure is forbidden for the (m,n)-order QPM.
So, the efficient frequency conversion requires not only
the QPM but also the structure matching (SM) that cor-
responds to the maximum of χ(2)(Gmn). As an example,
we discuss the conditions of the “forbidden” and matching
structures on 2D χ(2) arrays consisting of circular cylin-
ders. Assuming that χ(2)(r) = χ

(2)
0 (inside cylinders) or

−χ(2)
0 (outside cylinders), then we obtain

χ(2)(Gmn) =
χ

(2)
0

πβα2
mn

xJ1(x), (8)

where x = GmnR = 2παmnR/C0, R is the radium of a
circular cylinder; αmn =

√
m2 + n2 +mn for the triangu-

lar and hexagonal lattices, while αmn =
√
m2 + n2 for the

square lattice. Equation (8) shows that the “forbidden”
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Fig. 1. Nonlinear double-circle construction: the centers of two circles are placed at the beginning and end points of a reciprocal
vector Gmn and the radii of two circles are k3 and k, respectively. There are four types of QPM processes: (a) the forward
collinear QPM; (b) the backward collinear QPM (for clarity, the scale of Gmn has been enlarged); (c) “refraction” QPM; and
(d) “reflection” QPM.

structures should satisfy

R

C0
=

x1j

2παmn
, (9)

where {x1j} are the zero points of the first-order Bessel
function. According to d(xJ1(x))/dx = xJ0(x), the
matching structures should satisfy

R

C0
=

x0j

2παmn
, (10)

where {x0j} are the zero points of the zero-order Bessel
function J0(x). It is noted that the ratio of R/C0 can
not exceed that of the close-packed structures. This gives
rise to a finite number of matching structures. Then, the
maximal x0J defines the optimal matching structures of
the (m,n)-order QPM in terms of equation (10).

As is well known, the conventional Ewald construction
was used in searching for the Bragg diffraction in X-ray
diffraction by crystals. Recently, it has been generalized
to the 2D χ(2) crystals in seeking for the QPM. How-
ever, the Bragg diffraction or the QPM is an “accidental-
coincidence event” of this method. Here, we present a
novel and heuristic double-circle construction for any or-
der QPM, which can reveal many interesting physical pro-
cesses associated with the QPM, as addressed below. The
double-circle construction is described as follows: the cen-
ters of two circles are placed at the beginning and end
points of the reciprocal vector Gmn, and the radii of two
circles are k3 = |k3| and k = |k|, respectively. If there
exists no any cross-point between two circles, the (m,n)-

order QPM process is forbidden for the incident wave vec-
tor k. Otherwise, this QPM process is allowed to hap-
pen. Moreover, it requires that k is along the direction
of the link-line from the end point of Gmn toward the
cross-point of two circles. Then, the sum-frequency wave
propagates along the direction of the link-line from the
beginning point of Gmn toward the cross-point. For “inci-
dent” wave vectors with different values of k, four types of
the (m,n)-order QPM processes are found from this con-
struction, as shown in Figure 1: (a) the forward collinear
QPM with k3−k = Gmn; (b) the backward collinear QPM
with k3 + k = Gmn; (c) the “refraction” QPM in which
the resonant sum-frequency field is similar to a refrac-
tion wave; (d) the “reflection” QPM in which the resonant
sum-frequency field is similar to a reflected wave. For the
cases of (c) and (d), there are two cross points between two
circles. This indicates that there exist two equivalent inci-
dent directions for a given order non-collinear QPM. Thus,
non-collinear QPMs are “double-degeneracy” at least.

Using some relationships in trigonal geometry, it easily
deduces from Figure 1(c) that

k sin θi = k3 sin θi′ , (11a)
k3 sin θr′ − k sin θr = Gmn. (11b)

Equation (11a) shows that the “refraction” QPM is fully
as like light refraction process at interface between two
media. So, equation (11a) can be regarded as a nonlin-
ear Snell refraction law in this process. From Figure 1(d),
equation (11b) should be replaced by

k3 sin θr′ + k sin θr = Gmn, (11c)
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which is then referred to as a nonlinear Bragg re-
flection law in “reflection” QPM process. In fact, if
k3 = k = 2π/λ, then θr = θr′ = θ and equation (11c)
is reduced to the well-known Bragg law in X-ray crys-
tallography: λ = 4π sin θ/Gmn = 2dmn sin θ, here dmn is
the space between crystal lines. Equation (11c) is more
universal than equation (6) of reference [19]. In fact, for
the SHG equation (11c) can be expressed in terms of the
following form

λ2ω =
2π
Gmn

[
sin θr′ +

nω
n2ω

sin θr

]
=

2π
Gmn

√
(1− nω

n2ω
)2 + 4

nω
n2ω

sin2 θr′ + θr
2

.

By just setting θr′+θr = 2θ, equation (6) of reference [19]
is then obtained.

It is worthy to stressing that Figures 1(a) and (b)
actually give the critical condition: k3 − k ≤ Gmn ≤
k3 + k of the (m,n)-order QPM. This can be clearly
seen in SHG process with k = 2kω = 4πn(λ)/λ and
k3 = k2ω = 4πn(λ/2)/λ, as shown below. In the general
case, the optical dispersion of crystals has the properties
of n(λ1/2)−n(λ1) > n(λ2/2)−n(λ2) and n(λ1) > n(λ2) if
λ1 < λ2. So, k3±k = Gmn gives rise to the resonant tuning
wavelength range λ(m,n)

− ≤ λ ≤ λ(m,n)
+ for the (m,n)-order

QPM SHG. It is determined by

λ
(m,n)
± =

2C0

αmn

[
n(λ(m,n)
± /2)± n(λ(m,n)

± )
]
. (12)

It is noted that λ(m,n)
+ /λ

(m,n)
− � 1. This indicates that the

QPM resonant tuning of the SHG in the 2D χ(2) crystals
may operate over the whole transparent wavelength range
of crystals by adjusting the lattice constant C0 and the
QPM order αmn.

In summary, We have presented a thoroughly the-
oretical analysis for the QPM processes in the 2D χ(2)

photonic crystals. The solution to the wave equation
for small-signal sum-frequency process is derived by
the Green function method. It is predicted that the
conversion efficiency at the QPM is proportional to the
square of the angle-dependent effective crystal length.
This implies that the multiple wavelength frequency
conversion with controllable intensity can be realized
in a single 2D QPM crystal. It is also pointed out
that efficient frequency conversion requires both the
QPM and the proper structure matching. A novel
double-circle construction different from conventional
Ewald construction is presented. This construction
reveals four types of the QPM processes, and shows

that the 2D non-collinear QPM resonance follows nonlin-
ear Snell refraction and Bragg reflection laws. Especially,
it is demonstrated that the QPM resonant tuning of the
SHG in the 2D χ(2) photonic crystals may operate over
the whole transparent wavelength range of crystals.
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